Momentous change has happened. A cancer-free future is possible.
ALLIANCE FOR CANCER GENE THERAPY

Our mission
ACGT funds the best scientists and biotechnology companies harnessing the power of cell and gene therapy to transform how cancer is treated and drive momentum toward a cure.

Our commitment
Our commitment is to identify, fund and monitor innovative cancer cell and gene therapy research and trials, which meet a rigorous set of scientific standards and show the potential to effectively treat cancers of all types in the foreseeable future.

A mission-driven organization
In 2001, Barbara and Edward Netter founded ACGT to accelerate progress and fund the best research at the most prestigious institutions developing cell and gene therapies for cancer. Since then, ACGT has awarded $30.2 million through 59 grants to 54 research fellows representing 36 top medical institutions in the United States and Canada.

“The next decade is critical. ACGT played a role early on in the gene therapy advancements for liquid tumor patients. There is still so much unmet need, and a lot of challenging work ahead.

Scientifically — the need for ACGT is high.”

— David Darst, Jr.
ACGT Board Member
We have seen the world of cancer therapies change before our eyes.
When my late husband, Edward, and I started Alliance for Cancer Gene Therapy in 2001, he noted the imperative to meld rigorous medical science with bold, innovative thinking. Now, this approach has paid off, and we’re seeing results.

Cancer treatment is at an entirely different place now because of cell and gene therapy. Due to the wealth of science generated over the past 20 years, cancer cell and gene therapy is no longer considered an outlier in scientific research, as it was when we started this journey. Thanks in large part to public support of ACGT, it’s now established as a potentially curative treatment for blood cancers.

This is amazing progress – but we haven’t yet seen this magnitude of change in new therapy development for solid tumors. Thousands of people with lung, breast, ovarian, pancreatic, brain and other cancers are waiting for their breakthroughs. Taking pancreatic cancer as an example, five-year survival rates are just 9% with standard treatment, while the median survival for adults with glioblastoma, IDH-wildtype brain cancer, is only 11-15 months.

That’s why ACGT is funding science that we believe will lead to life changing treatments for highly aggressive cancers like these. That’s why we’re focusing on areas, identified by our Scientific Advisory Council, that will have the greatest impact for the patients with the fewest options.

Momentous change has happened and a cancer-free future is possible. I believe that we are at another inflexion point in scientific discovery and drug development. I am so grateful for your commitment to ACGT, and ask for your support in funding the next generation of therapies that will be safer and more effective against even the most lethal cancers.

Barbara Netter
Honorary Chairman
& Co-Founder
$30.2 million has been awarded by ACGT since 2002

100% of all public donations go directly to research

59 grants awarded since 2002

14 of the leading scientists in cancer cell and gene therapy oversee our grant award process — the ACGT Scientific Advisory Council

54 different Research Fellows have been supported representing 36 top institutions in the United States and Canada

80 grant applications from potential Research Fellows were received in 2019

ACGT is the only public charity in the nation exclusively funding cancer cell and gene therapy research
2017
Based on early funding from ACGT, the FDA approved the first gene therapy for cancer in the United States – a CAR T-cell therapy for childhood leukemia developed by Dr. Carl H. June at the University of Pennsylvania.

2018
ACGT funded grants to develop new cell and gene therapies for glioblastoma and pancreatic cancers and initiated a new clinical trial in ovarian cancer.

2019
ACGT funded researchers developing cell and gene therapies for pediatric sarcoma and prostate cancers.
AGAINST THE ODDS

A cancer immunologist perseveres in the face of skepticism, scarce funding and treatment-resistant ovarian cancer.

Ovarian cancer is a formidable foe, killing about 15,000 women a year in the United States alone. It’s especially hard to treat because there are no effective screening tests. That means that the disease is usually diagnosed after it has significantly advanced, leaving women with a 5-year survival rate of less than 25%.

Cancer immunologist Daniel J. Powell, Jr., Ph.D., wants to change that. His research team at the University of Pennsylvania has launched a new ACGT-funded clinical trial to treat ovarian cancer with a pioneering therapy involving genetically modified T cells.

T cells have taken center stage in the fast-growing field of cancer immunotherapy, with an approach that rallies the body’s own immune system to attack invading cancer cells. It works by altering a person’s own T cells (white blood cells) to turn them into “living drugs” and then infusing them back into the body. It essentially gives the altered cells the ability – a superpower, if you will – to seek out cancer cells and destroy them. Unlike traditional cancer treatment, immunotherapy lets the body recognize and attack the cancer cells, without killing healthy cells too.

Through a grant from ACGT, Dr. Powell is offering T-cell therapy to patients in dire circumstances. The women enrolling in this trial have advanced ovarian cancer and have gone through at least two rounds of chemotherapy that haven’t worked. The desperate need of women like these drew Dr. Powell to develop and test a new form of T-cell therapy, hoping to pave the way for dramatic, life-saving responses.

Think Big or Go Home

To equip the body to attack cancer cells using an immune response, T-cell therapy starts by giving the immune system better “vision” – an ability to recognize specific cancerous cells. Doctors first take millions of cells from the patient. These cells are then genetically engineered to recognize specific receptors on cancer cells, which differ depending on the type of cancer. The expectation is that the engineered T cells, now called chimeric antigen receptor, or CAR T cells, will then recognize and target the cancer cells.

“My greatest hope is that this trial will not only control tumors but mediate complete tumor eradication.”

— Daniel J. Powell, Jr., Ph.D.
University of Pennsylvania

CAR T-cell cancer therapy has shown unprecedented responses in treating – and even curing – some forms of advanced blood cancer. But the medical community is only just starting to explore how to control solid tumors using this approach. Dr. Powell isn’t deterred by being one of the first to rise to the challenge, and he aims to make this step a big one. “My greatest hope is that this trial will not only control tumors but mediate complete tumor eradication,” he says.
Dr. Powell says this with open eyes, knowing that clinical trials using similar approaches have not met with success. Finding the right targets (antigens) on solid tumors has been a major hurdle, as has keeping the engineered T cells alive long enough in the body to do their job. And while immunotherapy comes without the brutal cuts, burns and poison that accompany the traditional cancer treatments of surgery, radiation and chemotherapy, there are still serious side effects.

But Dr. Powell has reason to be optimistic. His team has been able to engineer CAR T cells that can recognize a bullseye called antigen folate receptor alpha, which is found on the surface of 90% of ovarian cancers – a plentiful target to seek and destroy. More good news is that there are low levels of this receptor in normal healthy tissue, so they’re in less danger from the CAR T cells’ attacks, reducing the risk of toxic side effects.

The Long and Winding Road

“Immunotherapy” is one of the biggest buzzwords in cancer therapy. But this wasn’t the case when Dr. Powell started. He discovered immunology as an undergraduate, finding himself enthralled by the complexity of the human immune system. Later, while earning his Ph.D., he began to think about the immune system in terms of its interaction with cancer, and how the system could be mobilized to attack the disease.

Dr. Powell diligently explored this in mouse models, and in 2003, he and others in the field gathered evidence that immune cells could, in fact, distinguish cancerous cells from healthy cells, and that specific anti-tumor responses could be generated under the right conditions.

With this knowledge, Dr. Powell felt compelled to translate the discovery to human clinical trials and create a cellular immunotherapy for people who desperately needed it. At the time, gene and cell therapies were largely in their infancy. Still, he joined the National Cancer Institute (NCI) to work in one of the few labs researching cancer immunotherapy. When Dr. Powell told his colleagues that he was taking a position at NCI to perform translational immunology, he was met with everything from incredulity to hostility. “People told me that it was a mistake and that it would never work,” he says.

Throughout his career, Dr. Powell had been inspired by the idea of what innovative thinking can do for science. He’d begun his college career as an art major and slowly drew a parallel between the field of art and the discipline of science. For Dr. Powell, exchanging freehand drawings and woodblock prints for lab coats and microscopes was simply a matter of applying his creative instincts to a different medium. He still carefully chooses and combines materials, studies the tools he uses and how they work at a mechanistic level and applies them to function in the way he wants, much like an artist would with a canvas and palette.
“In cancer research, we continue to invent and reinvent as part of the natural process,” Dr. Powell says. His lab did years of trial and error work in how to deliver immunotherapy, repeatedly going back to the drawing board. One major hurdle was getting the transferred T cells to persist in the body after infusion. His team persevered for years, knowing that whenever they saw long-term survival of transferred cells, the cancer would regress. In contrast, patients infused with cells without the capacity for “persistence” saw their disease progress.

As Dr. Powell and others in the field, like trailblazer and fellow UPenn and ACGT-funded researcher Carl H. June, M.D., proved their work, the scientific community and industry began to believe in the therapy’s potential to slow and halt cancer’s progression.

“There’s an old saying that I hold close: All patients deserve an optimistic doctor.”

Freedom in Funding

It’s alarming to imagine that Dr. Powell’s current trial, which has treated its first patient, almost didn’t happen. Dr. Powell’s team had been trying to develop this trial for eight years, but it was locked up in an alliance with an industry partner and was put on a long hold. Finally, the intellectual property rights were returned to UPenn, and he could legally continue.

Still, Dr. Powell couldn’t find funding. He applied for NIH support but was denied. “Approaches that are designed to be highly effective may be accompanied by high risk,” he says. By definition, pilot studies like this one, that are testing out entirely new treatments, are designed with an element of risk. “In these pilot studies, your primary objective is simply to establish feasibility and safety,” he says.

Finally, Dr. Powell sought and received support from ACGT in 2017. The three-year grant allowed him to develop and launch the trial – making it much more likely, if the therapy is safe and effective, that he will attract further funding for a larger trial.

Dr. Powell acknowledges that CAR T cells alone may not be enough to eradicate every last ovarian cancer cell. At some point, he will need to think again how to develop synergistic combination therapy, which he thinks can be built on the backbone of folate receptor alpha T cell-therapy. “I don’t shy away from thinking that we are building toward a cure,” he says. “There’s an old saying that I hold close: All patients deserve an optimistic doctor.”
FUNDING THE NEXT FRONTIER:
OVERCOMING SOLID TUMOR HURDLES

This year, the ACGT Scientific Advisory Council reviewed more than 80 compelling applications for grants from scientists around the country. The Council members rigorously reviewed and considered each proposal. Two frontrunners eventually emerged due to their enormous potential in addressing the challenges of developing gene therapies for solid tumors.

Cart T-cell therapy to treat prostate cancer
Leveraging T cells to confront prostate cancer and create a tumor-attack roadmap for other cancers

At the University of Pennsylvania, two preeminent research teams are joining forces to overcome prostate cancer’s stubborn resistance to CAR T-cell therapy.

Joseph Fraietta, Ph.D., is principal investigator and assistant professor of microbiology. Naomi Haas, M.D., is co-investigator, director of the Prostate and Kidney Cancer Program, and associate professor of medicine. Their research builds on principles established, with ACGT funding, by Carl H. June, M.D., and on Dr. Fraietta’s achievements in related clinical trials.

Together, they hope to unlock the epigenetic code that controls the fate and function of T cells and induce safe, long-term remission for advanced, metastatic prostate cancer. Their novel approach also may provide a tumor-attack roadmap that can be used to help fight other cancers.

Stopping a vicious childhood cancer
Enlisting genetically engineered immune cells to attack pediatric sarcomas and their lifelines

At St. Jude Children’s Research Hospital, a team of scientific investigators is pursuing an inventive approach to tackling the challenges of pediatric sarcomas. Because sarcomas can occur in different parts of the body, treatments and protocols have been challenging to pinpoint.

Stephen Gottschalk, M.D., is principal investigator and chair of the Department of Bone Marrow Transplantation and Cellular Therapy. He and his determined research team are exploring the use of emerging technologies to genetically engineer immune cells to destroy pediatric sarcomas by targeting two specific gene proteins found in pediatric sarcomas as well as the blood vessels that support tumor growth.
CURRENT ACGT RESEARCH FELLOWS

<table>
<thead>
<tr>
<th>Changing Treatment</th>
<th>Therapy_Type</th>
<th>Faculty Member</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted T-Cell Therapy</td>
<td></td>
<td>Stephen Gottschalk, M.D.</td>
<td>St. Jude Children’s Research Hospital</td>
</tr>
<tr>
<td>ImmunoTherapy</td>
<td></td>
<td>Seth Pollack, M.D.</td>
<td>Fred Hutchinson Cancer Research Center</td>
</tr>
<tr>
<td>ImmunoTherapy and T-Cell Therapy</td>
<td></td>
<td>Crystal Mackall, M.D.</td>
<td>Stanford University School of Medicine</td>
</tr>
<tr>
<td>Metabolic Reprogramming of CAR T Cells</td>
<td></td>
<td>Joseph Fraietta, Ph.D.</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Cancer Vaccine</td>
<td></td>
<td>Joseph Glorioso III, M.D., Ph.D.</td>
<td>University of Pittsburgh School of Medicine</td>
</tr>
<tr>
<td>ImmunoTherapy and Vaccine</td>
<td></td>
<td>Greg Michael Delgoffe, Ph.D.</td>
<td>University of Pittsburgh School of Medicine</td>
</tr>
<tr>
<td>ImmunoTherapy and Vaccine</td>
<td></td>
<td>Brent Hanks, M.D., Ph.D.</td>
<td>Duke University Medical Center</td>
</tr>
<tr>
<td>Changing Cancer Treatment</td>
<td>T Cell Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Ovarian Cancer Treatment | Daniel J. Powell, Jr. Ph.D.
University of Pennsylvania |

<table>
<thead>
<tr>
<th>Cancer Vaccine</th>
</tr>
</thead>
</table>
| Matthias Stephan, M.D., Ph.D.
Fred Hutchinson Cancer Research Center |

<table>
<thead>
<tr>
<th>Changing Cancer Treatment</th>
<th>Cancer Vaccine</th>
</tr>
</thead>
</table>
| Pancreatic Cancer Treatment | Matthias Stephan, M.D., Ph.D.
Fred Hutchinson Cancer Research Center |

<table>
<thead>
<tr>
<th>Glioblastoma Treatment</th>
<th>Virotherapy</th>
</tr>
</thead>
</table>
| Noriyuki Kasahara, M.D., Ph.D.
University of California, San Francisco |

<table>
<thead>
<tr>
<th>Cancer Stem Cell Directed Therapy</th>
</tr>
</thead>
</table>
| Marco Gallo, Ph.D.
University of Calgary |

<table>
<thead>
<tr>
<th>Changing Lymphoma and Leukemia Treatment</th>
<th>Immunotherapy/Engineering</th>
</tr>
</thead>
</table>
| | Yvonne Chen, M.S., Ph.D.
University of California, Los Angeles |

<table>
<thead>
<tr>
<th>Changing Solid Tumors Treatment</th>
<th>Immunotherapy</th>
</tr>
</thead>
</table>
| | Samuel Katz, M.D., Ph.D.
Yale University |
SOLID TUMOR CANCERS IN THE SPOTLIGHT

At this very moment, forward-thinking researchers at distinguished institutions from coast to coast are putting ACGT funding to work, deciphering the complex challenges of solid tumor cancers. From next-generation CAR T cells, oncolytic viruses and immunotherapies to the re-engineering of cancer stem cells, these researchers and their teams are advancing the understanding and ability to control and modify cells and genes necessary to eradicate some of the most difficult and deadly cancers.

Pancreatic cancer

A multidisciplinary team of immunologists, bioengineers and geneticists led by Matthias Stephan, M.D., Ph.D., at the Fred Hutchinson Cancer Research Center, is challenging the viability of pancreatic cancer by exploring how to deliver T cells that can be targeted effectively with anti-cancer vaccines. Using a vaccine that targets an antigen that only appears in tumor cells and not in healthy cells, this approach could succeed in stimulating a powerful immune response that destroys cancer cells and may work in multiple cancers, not just one.

Prostate cancer

Joseph Fraietta, Ph.D., and Naomi Haas, M.D., have joined forces at the University of Pennsylvania to unlock the epigenetic code that influences the fate and function of T-cells to increase their effectiveness and induce safe, long-term remission for advanced, metastatic prostate cancer.

Sarcomas

Powerful new technologies to genetically engineer immune cells are being employed by Stephen Gottschalk, M.D., at St. Jude Children’s Research Hospital. His work enables the immune cells to destroy pediatric sarcomas by targeting cancer cells and the blood vessels that support their growth. At Fred Hutchinson Cancer Research Center, Seth Pollack, M.D., is testing a first-ever combination of two genetically engineered T cells. Along with precision radiation, this pairing could be successful in recognizing and eliminating sarcomas. For T-cell immunotherapies to be effective, they must be both potent and persistent. These “living drugs” need to survive in a patient’s body and in the toxic sarcoma tumor long enough to have an impact — and this can be a challenge. Investigating ways to make T cells more persistent is being addressed by Crystal Mackall, M.D., at Stanford University.

Melanoma

Building on established success in fighting this lethal skin cancer, two researchers at the University of Pittsburgh are using cancer vaccines to infiltrate tumors and trigger the patient’s own immune system to destroy the cancer. Joseph Glorioso, III, M.D., Ph.D., is pioneering an improved gene vector design to safely and successfully target and triumph over metastatic cancer, while Greg Michael Delgoffe, Ph.D., is metabolically reprogramming T cells to make them more robust and fit to fight tumors. Likewise, Brent Hanks, M.D., Ph.D., of Duke University Medical Center, is working on a cancer vaccine for melanoma helping dendritic cells alert the patient’s immune system to cancer and allow the body’s natural killer T cells to attack it.
Glioblastoma
At the University of Calgary, Marco Gallo, Ph.D., is using advanced 3D engineering technologies to unravel the specific DNA architecture of the cancer stem cells of this insidious brain cancer. At the University of California, San Francisco, Noriyuki Kasahara, M.D., Ph.D., is using a genetically engineered virus to deliver suicide genes to the cancer cells, killing the cancer and enabling the immune system to prevent its return.

“When my grandmother developed metastatic brain tumors after being diagnosed with end-stage breast cancer, I experienced the vicious toll the disease had on her and everyone around her. Her battle inspired me to confront this insidious disease.”

— Alexander Stegh, Ph.D.
Northwestern University, Feinberg School of Medicine

Ovarian cancer
At the University of Pennsylvania Perelman School of Medicine, Daniel J. Powell, Jr., Ph.D., is offering new hope to women battling advanced ovarian cancer. In a phase 1 clinical trial, using adoptive T cell strategies, Dr. Powell is engaging the patients’ existing immune system and enabling it to more rapidly and effectively recognize and destroy this dangerous cancer, and to prevent it from coming back.

Lymphoma and Leukemia
A comprehensive high-throughput screening initiative that leaves no stone unturned is underway at the University of California, Los Angeles, Molecular Biology Institute. Through this work, Yvonne Chen, M.S., Ph.D., is searching for ways to bring the transformative potential of adoptive T-cell therapy to more patients by increasing the understanding of why certain patients respond and others do not and to identify new cell markers that lead to further treatment potential.

All solid tumor cancers
At Yale University School of Medicine, Samuel Katz, M.D., Ph.D., is overcoming barriers to the success of T cell therapies in solid tumors with an alternate approach to reprogramming cells. This research is focused on using RNA, instead of retro-viruses, to reprogram T cells to only recognize and attack cancer leaving healthy cells intact. Results may include increased safety, speed, control and the ability to deliver multiple proteins at the same time.

Learn more about current and past ACGT Research Fellows at acgtfoundation.org/gene-therapy-research
CHANGE-MAKING EVENTS

An Intimate Conversation with Crystal Mackall, M.D.

On October 1, 2018, Alliance for Cancer Gene Therapy hosted an evening discussion in New York with ACGT Fellow Crystal Mackall, M.D., Endowed Professor of Pediatrics and Medicine at Stanford University. The event was generously sponsored by Alexandria Real Estate Equities, Inc. / Alexandria Venture Investments. Dr. Mackall is Co-Medical Director of the Stanford Laboratory for Cell and Gene Medicine and, beginning in 2015, was funded by ACGT for research designed to improve upon earlier clinical studies in osteosarcoma, other sarcomas and neuroblastomas that express the tumor antigen GD2 (a mutant antibody) using engineered CAR T cells. The evening was moderated by Lynne Zydowsky, Ph.D., who is President & Co-Founder, Alexandria Summit.

Annual Swim Across America Fairfield County a Huge Success

Nearly 200 swimmers and 150 volunteers from across the Connecticut area came together to raise $375,000 to benefit ACGT, putting total dollars contributed over the past 13 years to $4 million for cancer cell and gene therapy research. In addition to the open water swim held on the beautiful Long Island Sound, Swim Across America Fairfield County also produced a number of additional regional events to help support ACGT, including Meters for a Cure ERG Challenge and Sip & Shop Girls’ Night Out.

Wendy Walk Continues Its Support of ACGT

Another successful year of Wendy Walk events in California, Florida and New York provided additional ACGT support this year. 100% of monies received from the events were directed toward research being conducted by ACGT Research Fellow, Seth Pollack, M.D., at Fred Hutchinson Cancer Center, who is testing a first-ever combination of two genetically engineered T cells. Along with precision radiation, this pairing could be successful in recognizing and eliminating sarcomas.

ACGT Honors Cancer Pioneer Dr. Carl H. June at its Award Gala

On April 18, 2019, ACGT held a very special Award Gala at the Harvard Club of New York City: Accelerating the Momentum of Early Pioneers. The evening’s honoree was Carl H. June, M.D., who was presented with The Edward Netter Leadership Award. Dr. June, who is the director of the Center for Cellular Immunotherapy at the University of Pennsylvania, was honored for his lifesaving CAR T cell treatment for leukemia and lymphoma, which was the first-ever FDA-approved gene therapy for cancer, and a result of early-funding by ACGT. The event raised over $400,000 for ACGT’s Research Fellows.
ACGT FISCAL YEAR ended April 30, 2019

CONDENSED STATEMENT OF ACTIVITIES 2019

Support and revenue:
Contributions $837,594
Special events 321,717
Contributed services 538,010
Investment and other income 350,856
TOTAL SUPPORT AND REVENUE 2,048,177

Expenses:
Program services 1,913,613
Supporting services 482,827
TOTAL EXPENSES 2,396,440
Decrease in total net assets (348,263)
Total net assets at beginning of year 4,823,285
TOTAL NET ASSETS AT END OF YEAR $4,475,022

CONDENSED STATEMENT OF FINANCIAL POSITION 2019

Assets:
Cash and cash equivalents $733,247
Investments, at fair value 5,397,306
Contributions receivable 176,003
Other assets 45,877
TOTAL ASSETS $6,352,433

Liabilities and net assets:
Liabilities
Grants payable $1,813,644
Accrued expenses 63,767
TOTAL LIABILITIES 1,877,411
TOTAL NET ASSETS 4,475,022
TOTAL LIABILITIES AND NET ASSETS $6,352,433

Alliance for Cancer Gene Therapy, Inc.’s complete financial statements are available upon request.

“Most research laboratories struggle to stretch their budgets and juggle priorities to make things work. This is why public donations are so incredibly powerful and appreciated. Every dollar makes a difference.”

— John Bell, Ph.D.
Ottawa Hospital Research Institute
Donor listings reflect contributions received during ACGT’s 2019 Fiscal Year (May 1, 2018 – April 30, 2019).

FOUNDER’S CIRCLE ($50,000+)
- Geneve Corporation
- Mrs. Barbara Netter
- Swim Across America
- The Wendy Walk

PRESIDENT’S CIRCLE ($25,000+)
- Community Health Charities
- Alva Greenberg
- The Lapin Foundation

PATHFINDERS ($10,000+)
- Alexandria Real Estate Equities, Inc.
- Mr. and Mrs. Andy Alisberg
- Teresa Burgess, Ph.D.
- Cogan Family Foundation
- Mr. and Mrs. David M. Darst, Jr.
- Deloitte Tax, LLP
- Daniel and Julia Englander
- Mr. and Mrs. Bill Fitzgerald
- Mr. Peter A. Glicklich, Esq.
- Mr. Michael Gregory
- Mr. and Mrs. Peter Hearn
- Tracy and Mark Holton
- Independence Holding Company
- Drs. Aya and Eddy Jakobovits
- Mr. and Mrs. Chau Q. Khuong
- Dr. and Mrs. John Lahey
- Mr. and Mrs. Edward Lampert
- Alexandra Landes
- Reuben and Arlene Mark
- Sylvia and Leonard Marx, Jr.
- Mr. John Miller
- Mr. and Mrs. John C. Sites, Jr.
- The Wasily Family Foundation
- University of Pennsylvania Perelman School of Medicine
- Mr. & Mrs. Robert Weisman
- Martin Winter
- Mr. and Mrs. Charles Zoubek

BENEFACTORS ($5,000+)
- Alvarez and Marsal Holdings
- Anonymous
- Brown Smith Wallace
- Clifford Chance U.S. LLP
- Davies Ward Phillips and Vineberg LLP
- Mr. and Mrs. Jeb Embree
- General Reinsurance Corporation
- JP Morgan Chase
- Ms. Joanna Karatzas
- Korn Ferry
- Mintz
- Quarles & Brady
- Quinnipiac University
- Mr. & Mrs. James Read
- Regeneron Pharmaceuticals
- Robinson & Cole
- Dr. Swan Thung and Mr. Roy Thung
- Mr. Tom Tryforos
- University of Massachusetts Medical School
TO OUR DONORS

PATRONS ($1,000+)
America’s Charities
Mr. Steven Annus
Anonymous (2)
Millcent S. Armstrong
Mr. and Mrs. Allan Bernard
Gregory Betts
Bruce Museum, Inc.
Charles S. Raizen Foundation
CLL Society Inc.
Martin Dickman
Nancy Duffy
Pamela Anne Duke
Mrs. Bernard Eichwald
Eisner Amper
Mr. & Mrs. Alan Englander
Alexandra Gladstone
Dr. John P. Hanson, Jr.
Sandra and Ira Harkavy
Mr. and Mrs. Henry Herbert
The Hoffman Family
Lan Hu, Ph.D
John and Kelly Hartman Foundation
Alice Kaplan and Jason Aronson
Mr. Jeffrey Keil
Carol A. Klimek
Mr. & Mrs. Andrew Kramer
Mr. and Mrs. Robert Leopold
Robert Levis
Carolyn and James Lockhart
Mrs. Dorothy Walton-Luglan and Mr. Leif Luglan
Richard Malnight
Mr. and Mrs. Alfred Netter
Mr. and Mrs. David Parisier
Leigh Haskell Perkins, Ill
Sharon and Barnet Phillips
Mr. & Mrs. Richard Radcliffe
Michael E. Reeves
Mrs. Francine Roberson
Sandra Rogol
Rose Serels
Elizabeth Sherman
LeRoy Sluder, Ill
Mr. and Mrs. H. W. Smith
Ms. Nicky Cass and Mr. Henry Spencer
Mr. & Mrs. James G. Tatum
Mr. and Mrs. Charles Tusa
Andrew Wiener
Dr. Savio L.C. Woo and Mrs. Emily Woo

ADVOCATES ($500+)
Stan and Ilene Barshay
Stephen Corman
Michael Englander
Mrs. Anne Gilhuly
Mr. and Mrs. Carl A. Goldman
Mr. and Mrs. Sheldon Gordon
Barbara Hayes
Kevin S. Honeycutt
Mr. and Mrs. Tom Hughes
Mr. Kenneth Irvine
Rikki and Barry Kaplan
Ms. Julie Thiele and Mr. Paul Kempner
Mr. and Mrs. Donald Kirk
Joseph A. Lander
Joyce Light
Mr. Theodore Lobsenz
Jill Lund
Mr. and Mrs. Raymond Maggi
Norman Masri
Barbara Mines
Stanley Newmark
Douglas Olson
Louis Victor Senatore
Bobek Shayegani
Mr. and Mrs. Markley Suthers
Melish Thompson
Dr. Deborah and The Honorable Richard Tolchin
Mr. Peter Trent
United Way of Metropolitan Chicago
Mr. & Mrs. Scott Welsh
Jordan Yarett
Carol Young

We have made every effort to ensure the accuracy of our donor listings. If your name has been omitted or misprinted, please accept our sincere apologies and contact the ACGT office at info@acgtfoundation.org or call (203) 358-5055.
LEADERSHIP

BOARD OF DIRECTORS

Barbara Netter, M.S.
Honorary Chairman & Co-Founder
Psychotherapist

Peter A. Glicklich
Chairman of the Executive Committee
Davies, Ward, Phillips & Vineberg LLP

Andy Alisberg
Investor

Terri Burgess, Ph.D.
Paradigm Shift Therapeutics

David M. Darst, Jr.
RGenix, Inc.

Daniel Englander
Ursula Capital Partners

Michael Gregory
Avidity Partners

Tracy B. Holton
Attorney and Author

Aya Jakobovits, Ph.D.
Adicet Bio

Chau Khuong
OrbiMed Advisors LLC

John L. Lahey, Ph.D.
Quinnipiac University

Alexandra Landes
Wendy Walk

John C. Sites, Jr.
Wexford Capital, LLC

Martin Winter
Alvarez & Marsal

Martha Zoubek
Wrightson-Ramsing Foundation

Edward Netter
In Memoriam, Founding President
(2001-2011)

SCIENTIFIC ADVISORY COUNCIL

Joseph C. Glorioso III, Ph.D.
Chairman, Scientific Advisory Council
University of Pittsburgh School of Medicine

Stuart A. Aaronson, M.D.
Icahn School of Medicine at Mount Sinai

John Bell, Ph.D.
Ottawa Hospital Research Institute

Lieping Chen, M.D., Ph.D.
Yale Cancer Center

E. Antonio Chiocca, M.D., Ph.D., FAANS
Brigham and Women’s Hospital

Mitchell H. Finer, Ph.D.
MPM Capital, Avalanche Biotechnologies

Carl H. June, M.D.
University of Pennsylvania Abramson Cancer Center

Noriyuki Kasahara, M.D., Ph.D.
University of California, San Francisco

Michael T. Lotze, M.D.
University of Pittsburgh School of Medicine

Jack A. Roth, M.D., FACS
MD Anderson Cancer Center

Stephen J. Russell, M.D., Ph.D.
Mayo Clinic

Michel Sadelain, Ph.D.
Memorial Sloan Kettering Cancer Center

Dario A. Vignali, Ph.D.
University of Pittsburgh School of Medicine

George D. Yancopoulos, M.D., Ph.D.
Regeneron Pharmaceuticals

Savio L.C. Woo, Ph.D.
Chairman Emeritus, Scientific Advisory Council

EXECUTIVE TEAM

Kevin S. Honeycutt
CEO & President

Barbara Lavery
Chief Program Officer

H. William Smith, Esq.
Legal/Secretary

Christine A. Herman
Finance
“As a physician, I’d likely be able to help a few thousand or so patients a year. As an educator, I could teach perhaps 100 students a year, who could each then go on to become physicians and collectively help hundreds of thousands of people a year.

But as a cancer researcher in cell and gene therapy, by discovering the cause of an unexplained disease or by developing a new diagnostic test or a novel treatment, potential exists for me to impact the lives of millions of people, including those in generations not yet born.”

— Noriyuki Kasahara, M.D., Ph.D.
University of California, San Francisco
FOUNDED in 2001 by Barbara and Edward Netter, ACGT is the only charitable organization in the nation dedicated exclusively to funding cell and gene therapies for cancer.

OUR MISSION ACGT funds the best scientists and biotechnology companies harnessing the power of cell and gene therapy to transform how cancer is treated and drive momentum toward a cure.

OUR COMMITMENT is to identify, fund and monitor innovative research studies and trials that meet a rigorous set of scientific standards and have the potential to treat cancers of all types in the foreseeable future.