Hui Hu, PhD

Hui Hu, PhD
The Wistar Institute Cancer Center (Philadelphia, PA)
 

Year Funded:
2011

Focus:
Ovarian Cancer

A novel T cell quiescence mechanism in anti-ovarian tumor responses.

Ovarian cancer is one of the deadliest cancers, responsible for the deaths of ~15,000 Americans per year, even more than melanoma, AML or brain tumors. 5-year survival rates have improved little in the last 30 years, and still remain at 30% at best for patients with metastatic ovarian carcinoma, the stage at which most cases are diagnosed. Studies using pre-clinical models indicate that tumor-reactive T cells properly conditioned ex vivo have the capacity to induce significant therapeutic effects against established ovarian cancer, yet the activity of transplanted T cells was suboptimal.  

Novel strategies for reprogramming adoptively transferred anti-tumor T cells, to allow better engraftment and thus superior therapeutic activity in the especially hostile microenvironment of ovarian cancer, are urgently needed. Forkhead box (FOX) proteins are a large family of transcription factors with diverse functions in development, cancer, and aging. Recently we have demonstrated that Foxp1 exerts a novel cell-intrinsic regulation of T cell quiescence.  

In a mouse model of ovarian carcinoma, which recapitulates the microenvironment of solid human ovarian cancers, we find that tumor-associated T cells up-regulate Foxp1 as the tumor progresses. We also find that Foxp1 dampens T cell immune responses. Therefore, in this proposal, we hypothesize that the up-regulation of Foxp1 in ovarian cancer-infiltrating T cells negatively regulates the T cell responses; consequently, Foxp1-deficient tumor-reactive T cells will better resist tumor-induced immunosuppressive signals and elicit superior anti-tumor immunity.  

While we aim to determine the role of Foxp1 in tumor-induced T cell unresponsiveness (Aim 1), we will also use pre-clinical ovarian carcinoma models to determine the therapeutic effectiveness of adoptively transferred T cells lacking Foxp1 (Aim 2). Our initial experiments show that ovarian tumor-bearing mice receiving in vitro-primed anti-tumor T cells deficient in Foxp1 have superior survival over control mice, providing a rationale for novel therapeutic interventions targeting Foxp1 in tumor-reactive T cells from ovarian cancer-bearing women.  

In summary, our proposed work will have a profound effect on the field by defining a novel mechanism for the loss-of-function of anti-tumor T cells in ovarian cancer, which may be applicable to other lethal epithelial tumors. The accomplishment of the work will provide both a mechanistic rationale and proof-of-concept for new interventions aimed at maximizing the effectiveness of adoptively transferred tumor-reactive T cells. Our long-term goal is to develop improved treatment options for ovarian cancer in clinic through adoptive transfer of tumor-reactive T cells, which are genetically modified to overcome tumor-induced immune suppression.

Academic Profile

Read profile

Hui Hu, Ph.D.
Associate Professor
Department of Microbiology
University of Alabama at Birmingham
Bevill Biomedical Sciences Research Building
BBRB 845
845 19th Street South
Birmingham AL 35294-2170